KÄHLER SUBMANIFOLDS WITH LOWER BOUNDED TOTALLY REAL BISECTIONL CURVATURE TENSOR II
نویسندگان
چکیده
منابع مشابه
Kähler Submanifolds with Lower Bounded Totally Real Bisectional Curvature Tensor
In this paper, we prove that if every totally real bisectional curvature of an n(≥ 3)-dimensional complete Kähler submanifold of a complex projective space of constant holomorphic sectional curvature c is greater than c 4(n2−1)n(2n− 1), then it is totally geodesic. Mathematics Subject Classifications: 53C50, 53C55, 53C56.
متن کاملTotally umbilical radical transversal lightlike hypersurfaces of Kähler-Norden manifolds of constant totally real sectional curvatures
In this paper we study curvature properties of semi - symmetric type of totally umbilical radical transversal lightlike hypersurfaces $(M,g)$ and $(M,widetilde g)$ of a K"ahler-Norden manifold $(overline M,overline J,overline g,overline { widetilde g})$ of constant totally real sectional curvatures $overline nu$ and $overline {widetilde nu}$ ($g$ and $widetilde g$ are the induced metrics on $M$...
متن کاملC-totally real warped product submanifolds
We obtain a basic inequality involving the Laplacian of the warping function and the squared mean curvature of any warped product isometrically immersed in a Riemannian manifold (cf. Theorem 2.2). Applying this general theory, we obtain basic inequalities involving the Laplacian of the warping function and the squared mean curvature of C-totally real warped product submanifolds of (κ, μ)-space ...
متن کاملEigenvalue estimates for submanifolds with locally bounded mean curvature
We give lower bounds estimates for the first Dirichilet eigenvalues for domains Ω in submanifolds M ⊂ N with locally bounded mean curvature. These lower bounds depend on the local injectivity radius, local upper bound for sectional curvature of N and local bound for the mean cuvature of M . For sumanifolds with bounded mean curvature of Hadamard manifolds these lower bounds depends only on the ...
متن کاملOn Ricci Curvature of C-totally Real Submanifolds in Sasakian Space Forms
Let Mn be a Riemannian n-manifold. Denote by S(p) and Ric(p) the Ricci tensor and the maximum Ricci curvature on Mn, respectively. In this paper we prove that every C-totally real submanifolds of a Sasakian space form M̄2m+1(c) satisfies S ≤ ( (n−1)(c+3) 4 + n 2 4 H2)g, where H2 and g are the square mean curvature function and metric tensor on Mn, respectively. The equality holds identically if ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications of the Korean Mathematical Society
سال: 2002
ISSN: 1225-1763
DOI: 10.4134/ckms.2002.17.2.279